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Abstract 
As a “stealth” virus, hepatitis B virus (HBV) is not 

directly cytopathic for infected hepatocytes. Hepatic 

injury is due primarily to the response of the body’s 

immune system to either acute or chronic infection with 

HBV. In general, two types of host’s responses occur to 

viral infection, i.e., innate immune response and adaptive 

immune response. Current evidence suggests that the 

innate immune response does not play an important role 

either in HBV clearance or in liver injury. In contrast, the 

adaptive immune response mediated by cytotoxic T-

lymphocyte (CTL) cells is kinetically associated with viral 

clearance and liver injury. This observation suggests that 

the pathogenesis of HBV is closely related to the CTL-

mediated immune response. One important way in which 

CTL cells mediate viral clearance is to secrete serine 

protease granzymes such as granzyme A and granzyme B 

which lead to the apoptosis of infected cells. However, 

HBV replication can upregulate the expression of 

apoptosis inhibitors such as serine protease inhibitor 

Kazal, or SPIK, resulting in the resistance of the cells to 

CTL-mediated immune killing. The inability of the 

immune system to clear HBV-infected cells can lead to 

chronic hepatitis B and development of HBV-cirrhosis 

and hepatocellular carcinoma.  
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Hepatitis B virus (HBV) is a major human pathogen 

responsible for acute and chronic liver disease. Over 95% of 

acutely infected adults recover completely and spontaneously 

from the infection, whereas most individuals who acquire 

neonatally transmitted infections develop persistent viral 

replication or chronic infection.
1-2

 Chronic HBV infection 

can progresses to life-threatening complications such as 

cirrhosis and hepatocellular carcinoma (HCC).
3
 Worldwide, 

more than 350 million people are chronically infected with 

HBV. More than one-third of these individuals will die from 

serious liver diseases such as cirrhosis and HCC if their 

conditions are left untreated.
4
 Therefore, it is important to 

improve our understanding of HBV pathogenesis, which will 

lead to the development of better treatments for HBV 

infection. 

 

Because of lacking efficient animal models in which to study 

the pathogenesis of HBV infection, the most convincing data 

have come from studies done in chimpanzees. Chimpanzees 

injected with HBV developed an acute infection. Hepatic 

injury and the body’s immune response were then evaluated. 

Results showed that HBV is not directly cytopathic for the 

infected hepatocytes.
4-7

 During the early phase of infection of 

the chimpanzees, or before HBV-specific T lymphocytes 

enter the animal’s liver, 100% of the hepatocytes may be 

infected without histological or biochemical evidence of liver 

disease. Damage to the liver occurs only after the initiation of 

the immune response to clear the virus,
8
 which suggests that 

HBV does not directly cause hepatic injury. Further study 

suggested that damage to the liver is associated with the 

infiltration of activated T lymphocytes in HBV-infected liver. 

Moreover, if the cellular immune response mediated by T 

lymphocytes is deficient or pharmacologically suppressed, 

HBV can replicate at high levels in the liver of patients in the 

absence of cytological abnormalities or inflammation.
1, 4

 

These results further support the hypothesis that hepatic 

injury is triggered by the body’s immune response during 

clearance of virus-infected cells. In chronic HBV infection, 

usually only slight or no liver damage occurs, although active 

viral replication is found that may be due to the absence of an 

active immune response or to the fact that the immune 

system is overwhelmed.
6, 9
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Innate Immune Response Does Not Play an 

Important Role in HBV-Mediated Liver Injury 
The body’s immune response usually includes innate and 

adaptive immune responses. Unlike the adaptive immune 

response, the innate immune response is a cellular response 

to the virus or other pathogen.
10-11

 It is an immediate, 

nonspecific response that often results in a rapid induction of 

interferon alpha/beta by the infected cell, which triggers the 

transcriptional expression of a large number of interferon 

inducible genes (ISGs). The ISGs in turn initiate a variety of 

intracellular antiviral mechanisms that have the potential to 

minimize pathogenetic processes by limiting viral production 

and spread.
10

 Surprisingly, intrahepatic gene expression 

profiling in chimpanzees acutely infected with HBV revealed 

that HBV acts like a stealth virus early after infection 

because it does not induce any cellular gene expression 

including ISGs as it spreads through the liver.
12

 This process 

is in stark contrast to the induction of 27 ISGs during the 

spread of hepatitis C virus infection in chimpanzees.
13-14

  In 

chronic hepatitis, no evidence indicates that HBV replication 

leads to apoptotic death of hepatocytes is mediated by an 

innate immune response. The fact that the existence of HBV 

does not trigger an innate immune response is further 

supported by the observation that high levels of HBV in 

stable cell lines such as HepG2.215 and AD38 cells (derived 

from Huh7 cells) do not induce cell death.
15-16

 It was reported 

that HBV replication triggered autophagy in Huh7.5 cells;
17

 

however, it could not be excluded that this autophagy may be 

the result of artificially overexpressing HBV proteins in some 

in vitro systems. Other evidence supporting this hypothesis 

comes from analysis of Toll-like receptors in patients with 

chronic HBV infection. The Toll-like receptor pathway is an 

important route of the innate immune response. Activation of 

Toll-like receptors can suppress HBV replication.
18

 However, 

an obvious decrease in the levels of Toll-like receptors, such 

as TLR1, TLR2, TLR4, and TLR6, was found in patients 

with chronic HBV infection, suggesting that the innate 

immune response through the Toll-like receptor pathway 

does not play a role in virus clearance in chronic hepatitis 

B.
19

  

 

The Role of the Adaptive Immune Response in 

HBV Infection 
The clearance of infected virus during acute and probably 

also in chronic HBV infection is due to the body’s adaptive 

immune response, which usually prompts the death of 

infected hepatocytes leading to hepatic injury and damage.
20-

21
 Serum glutamic-pyruvic transaminase (SGPT), known also 

as alanine transaminase (ALT), is one of the markers for 

diagnosing liver damage. Dead hepatocytes release ALT, 

increasing its level in the blood. In acute HBV infection, the 

death of hepatocytes is caused by an attack from the T 

lymphocytes, the intention of which is to remove virus-

infected cells. In this immune response, both CD4 T cells (T 

helper cells) and CD8 T (cytotoxic T-lymphocyte [CTL]) 

cells are activated.
6, 9

 CD4 T cells are robust producers of 

cytokines and are required for the efficient development of 

CTLs and B cells, which produce anti-HBV antibody to 

reduce the levels of circulating virus.
9, 22

 Studies of HBV-

infected chimpanzees suggest that CD4 T cells have no direct 

effect on viral clearance and liver disease. Depletion of CD4 

T cells at the peak of HBV infection in chimpanzees does not 

affect the rate of viral clearance or the extent of liver damage, 

thereby supporting this hypothesis.
20

 However, CD4 T cells 

may be necessary to instruct and maintain anti-HBV CTLs.  

The specific CTL response plays a significant role in viral 

clearance and the pathogenesis of liver damage. In acute 

HBV infection, initial damage to the liver corresponds 

kinetically with the entry of HBV-specific CTLs into the 

liver. Furthermore, depletion of these cells at the peak of 

viremia delays the onset of liver damage and viral clearance 

in chimpanzees.
8, 20

 The association of CTLs with liver injury 

is also observed in patients with acute viral hepatitis who 

successfully clear HBV.
23

 In patients with chronic HBV 

infection, CTLs seem to be suppressed, although low levels 

of CTLs exist in the infected liver.
21, 24

 Reactivation of the 

killing mediated by CTLs usually leads to the clearance of 

HBV in patients with chronic infection.
21

 Adoptive transfer 

of HBV-specific CTL lines and clones into immunologically 

tolerant HBV transgenic mice triggers a necroinflammatory 

liver disease that shares the same histologic features seen in 

acute viral hepatitis in man and results in the inhibition of 

HBV replication.
25

  

 

The Granzymes and Viral Clearance and Liver 

Injury 
The killing of virus-infected cells mediated by the adaptive 

immune response starts by activation of CTL and natural 

killer (NK) cells. They possess cytolytic granules that are 

secreted during interaction with infected cells and induce 

apoptotic death in the target cells (Figure 1).
26-27

 The 

granule-induced cell death pathway relies primarily on a 

family of structurally related serine proteases known as 

granzymes (Gzms) and the membrane-disrupting protein 

perforin. The Gmz family includes GzmA and GzmB as well 

as other lesser known Gzms (e.g., C and M).
28-30

 The roles of 

GzmA and GzmB as inducers of apoptotic cell death are well 

established; however, the role of other Gzms remains 

uncertain.
31-33

 Activated CTL and NK cells dominantly 

express GzmA and GzmB but not other Gzms, suggesting 

that GzmA and GzmB are important parts of the adaptive 

immune clearance process. GzmB induces apoptosis by 

activating caspase-dependent pathways that can be 

suppressed by the pan-caspase inhibitor Z-VAD. Therefore, 

this apoptotic pathway is known as caspase-dependent cell 

apoptosis.
34-35

 GzmA, however, acts in a caspase-independent 

manner and can be inhibited by serine protease inhibitors. 

GzmA-induced apoptosis is therefore known as serine 

protease-dependent cell apoptosis (SPDCA) (Figure 1).
36-37

 

Neither GzmA nor GzmB alone can trigger cell apoptosis 

because neither one can pass the cell membrane. To induce 

cell apoptosis, they need assistance from perforin. The 

specific mechanism of action for perforin and its role in 

granzyme-mediated apoptosis are widely debated.
27, 38-39
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Perforin itself cannot induce cell apoptosis; however, one 

hypothesis is that perforin pokes holes in the target cell, 

allowing the Gzms to enter and initiate apoptosis (Figure 

1).
26, 40-42

 Suppressing or inhibiting either GzmA or GzmB 

can block CTL-induced apoptosis, resulting in the ability of 

infected cells to evade death by immune surveillance. GzmA 

is especially important in the challenge of viral infection. 

GzmA-deficient mice showed a compromised ability to 

maintain the ectromelia (mousepox) virus and herpes simplex 

neuronal infections even though GzmB and perforin were 

competently expressed.
43-44

 This finding suggests that GzmA 

plays an important role in viral clearance (see below). 

 

 

 
 

 

 

 

 

 

HBV Replication Upregulates SPIK Expression, 

Resulting in the Ability of Infected Cells to 

Evade Gzma-Mediated Apoptosis 
Our recent studies showed that HBV replication can 

upregulate the expression of a newly discovered apoptosis 

inhibitor, serine protease inhibitor Kazal (SPIK).
45-46

 SPIK is 

a small protein,
47

 also known as pancreas secretory trypsin 

inhibitor (PSTI) and tumor-associated trypsin inhibitor 

(TATI).
48-50

 It was first discovered in the pancreas as an 

inhibitor of autoactivation of trypsinogen.
51

 The expression 

of SPIK in normal tissues is limited or inactivated except in 

the pancreas.  Studies have shown, however, that it can be 

activated as a reactant during hepatitis or liver 

inflammation.
52-53

 For example, SPIK was activated in rat 

liver cells to counter turpentine-induced liver inflammation.
53

 

SPIK was also activated during human viral hepatitis in 

response to inflammatory cytokines.
52

 HBV replication can 

upregulate the expression of SPIK in cell culture systems.
46

 

A high level of SPIK is found in HBV-infected human liver 

cells.
49

 As an apoptosis inhibitor, SPIK can suppress SPDCA 

induced by treatment with brefeldin A combined with 

cycloheximide.
45

 Overexpression of SPIK, either by 

transfection of the HBV genome or by direct transfection of 

the SPIK gene, prompts cellular resistance to SPDCA.
46

 

Although what kind of serine protease is involved in 

brefeldin A/cycloheximide-induced SPDCA is still unknown, 

it is clear that SPIK can inhibit this kind of serine protease, 

preventing the apoptosis mediated by it. 

 

Considering that GzmA and GzmB are serine proteases, it 

was hypothesized that SPIK inhibited GzmA- and GzmB-

induced apoptosis. The first evidence to support this 

hypothesis came from the study of mouse SPIK. In 2003, 

Tsuzuki et al. reported that rat SPIK could directly bind 

GzmA and inhibit its ability to hydrolyze substrates such as 

N-α-benzyloxycarbonyl-L-lysine thiobenzyl ester.
54

 

Although the structure of mouse SPIK has few similarities 

with that of human SPIK, we found that human SPIK could 

also bind GzmA (unpublished data). Moreover, we found that 

overexpression of SPIK in cells resulted in cellular resistance 

to apoptotic death mediated by GzmA (unpublished data). 

Figure 1. Immune-killing mediated by CTL and NK cells. Granules: GzmA and GzmB are secreted by 

activated CTL and NK cells.  GzmA induces cell apoptosis in a caspase-independent/serine protease-

dependent manner (SPDCA). GzmB induces cell apoptosis in a caspase-dependent manner. CDCA, 

caspase-dependent cell apoptosis; CTL, cytotoxic T-lymphocyte;  Gzm, granzyme;  NK,  natural killer; 

SPDCA, serine protease-dependent cell apoptosis. 
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These findings suggested that SPIK may function as a GzmA 

inhibitor, preventing the apoptosis mediated by GzmA. 

Considering that HBV replication can upregulate SPIK 

expression, the overexpression of SPIK probably protects 

HBV-infected cells from apoptotic killing mediated by CTLs 

via GzmA. As we mentioned previously, in patients with 

chronic viral hepatitis, CTL-mediated immune clearance is 

usually inefficient or suppressed. This observation may 

explain why HBV-infected cells cannot be cleared during 

chronic hepatitis despite the existence of CTLs in the liver. 

Even though CTL-mediated immune clearance not only relies 

on the induction of apoptosis by GzmA, inhibition of GzmA 

by SPIK definitely helps HBV-infected cells avoid CTL-

mediated immune clearance.
43-44

  

 

HBV Infection and Development of HCC 
Persistent HBV infection often leads to the development of 

HCC. The reason is still unknown. However, one important 

reason may be the inability of the immune system to remove 

virus-infected cells from the body. Failure to remove virus-

infected cells often results in gradually accumulating cellular 

genetic changes that finally lead to the development of 

HCC.
55

 As we mentioned before, the failure of the immune 

system to remove malignant cells through apoptosis may be 

due to the upregulation of apoptosis inhibitors such as SPIK 

in these cells. Both persistent viral replication and 

necroinflammation of liver cells in patients with chronic 

HBV infection could increase the SPIK levels in infected 

cells. This process may then prevent the removal of these 

cells by GzmA-mediated immune clearance. This observation 

is supported by the fact hat the development of HCC is 

closely associated with the increase of SPIK levels in cells. 

Lee and colleagues found that the levels of SPIK in HBV-

infected patients were correlated with the progress of HCC, 

for example, with the malignant phase of the cancer.
56

 

Moreover, the high levels of SPIK were closely related with 

early recurrence of HCC in these patients following surgical 

resection.
56

  Because recurrence of cancer often implies the 

inability of the immune system to clear lingering oncogenetic 

cells, early recurrence of HCC in patients with high levels of 

SPIK raises the possibility that overexpression of SPIK might 

interfere with the immune elimination of lingering 

oncogenetic cells. Figure 2 summarizes the possible 

pathogenesis of HBV infection and liver disease. 

 

 

 

 

 
 

 

 

 

 

 

Figure 2. Possible pathogenesis of HBV infection and liver disease. CTL, cytotoxic T-lymphocyte; HBV, 

hepatitis B virus; NK, natural killer; SPIK, serine protease inhibitor Kazal. 
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Suppression of SPIK Expression to Prevent the 

Development of Chronic Viral Infection and 

HCC 
No effective methods are currently available to prevent or 

completely cure chronic HBV infection and HCC. Nine 

licensed treatments for chronic HBV are presently available: 

Two are based on interferon-α; the remaining seven are based 

on nucleoside/nucleotide analogues (NAs). Both types of 

interferon-based therapies are currently limited to certain 

well-defined populations, are expensive, are logistically 

challenging for populations most in need, and are associated 

with many side effects that can lead to cessation of 

treatment.
57-58

 In general, NAs are long-term treatments with 

varying side effects that are costly to populations with the 

greatest need; they also are associated with slow cure rates, 

and their physiological impact is inhibited by both unique 

and common mutations. Over time, resistance develops that 

impacts the utility of changing from one NA to another.
59

 

Recent efforts to thwart antiviral resistance led to pairing a 

nucleoside with a nucleotide; however, new mutants against 

such combinations continue to arise. Preliminary evidence 

indicates that current treatments may lead to a new viral 

mutant that is no longer susceptible to any of the approved 

NAs.
57

 Such a strain could become a serious health issue if it 

were sturdy enough to circulate in at-risk populations, or 

even worse, novel enough to infect those already vaccinated. 

Efforts to develop new classes of HBV therapeutics may help 

to mitigate these risks and thwart resistance to NAs. For 

treatment of HCC, only sorafenib has been approved.
60

 

However, the nonspecific killing of normal cells limits its 

therapeutic use.
61

 Therefore, it is imperative to further 

develop anti-HBV drugs, particularly those drugs that work 

differently from existing drugs. If resistance to GzmA-

induced apoptosis can prevent the elimination of HBV-

infected cells, then reinstating sensitivity to GzmA induced-

apoptosis should allow clearance of infected cells, further 

preventing HCC formation. Our study suggests that 

suppressing overexpressed SPIK in HBV-expressing cells 

restored the sensitivity of these cells to apoptosis.
46

 Thus, it is 

feasible to develop a drug that can suppress overexpressed 

SPIK either in HBV-infected cells or HCC cells to treat 

chronic HBV infection and HCC by restoring the ability of 

the immune system via GzmA to kill HBV-infected cells.  
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